skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zupan, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We exhibit infinitely many ribbon knots, each of which bounds infinitely many pairwise nonisotopic ribbon disks whose exteriors are diffeomorphic. This family provides a positive answer to a stronger version of an old question of Hitt and Sumners. The examples arise from our main result: a classification of fibered, homotopy‐ribbon disks for each generalized square knot up to isotopy. Precisely, we show that each generalized square knot bounds infinitely many pairwise nonisotopic fibered, homotopy‐ribbon disks, all of whose exteriors are diffeomorphic. When , we prove further that infinitely many of these disks are also ribbon; whether the disks are always ribbon is an open problem. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. The ribbon number of a knot is the minimum number of ribbon singularities among all ribbon disks bounded by that knot. In this paper, we build on the systematic treatment of this knot invariant initiated in recent work of Friedl, Misev, and Zupan. We show that the set of Alexander polynomials of knots with ribbon number at most four contains 56 polynomials, and we use this set to compute the ribbon numbers for many 12-crossing knots. We also study higher-genus ribbon numbers of knots, presenting some examples that exhibit interesting behavior and establishing that the success of the Alexander polynomial at controlling genus-0 ribbon numbers does not extend to higher genera. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  3. Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers. 
    more » « less
  4. We examine the Kauffman bracket expansion of the generalized crossing $$\Delta_n$$, a half-twist on $$n$$ parallel strands, as an element of the Temperley-Lieb algebra with coefficients in $$\mathbb{Z}[A,A^{-1}]$$. In particular, we determine the minimum and maximum degrees of all possible coefficients appearing in this expansion. Our main theorem shows that the maximum such degree is quadratic in $$n$$, while the minimum such degree is linear. We also include an appendix with explicit expansions for $$n$$ at most six. 
    more » « less
  5. We prove that every smoothly embedded surface in a 4-manifold can be isotoped to be in bridge position with respect to a given trisection of the ambient 4-manifold; that is, after isotopy, the surface meets components of the trisection in trivial disks or arcs. Such a decomposition, which we call a generalized bridge trisection, extends the authors’ definition of bridge trisections for surfaces in S 4 . Using this construction, we give diagrammatic representations called shadow diagrams for knotted surfaces in 4-manifolds. We also provide a low-complexity classification for these structures and describe several examples, including the important case of complex curves inside ℂ ℙ 2 . Using these examples, we prove that there exist exotic 4-manifolds with ( g , 0 ) —trisections for certain values of g. We conclude by sketching a conjectural uniqueness result that would provide a complete diagrammatic calculus for studying knotted surfaces through their shadow diagrams. 
    more » « less