Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers.more » « less
-
We examine the Kauffman bracket expansion of the generalized crossing $$\Delta_n$$, a half-twist on $$n$$ parallel strands, as an element of the Temperley-Lieb algebra with coefficients in $$\mathbb{Z}[A,A^{-1}]$$. In particular, we determine the minimum and maximum degrees of all possible coefficients appearing in this expansion. Our main theorem shows that the maximum such degree is quadratic in $$n$$, while the minimum such degree is linear. We also include an appendix with explicit expansions for $$n$$ at most six.more » « less
-
We prove that every smoothly embedded surface in a 4-manifold can be isotoped to be in bridge position with respect to a given trisection of the ambient 4-manifold; that is, after isotopy, the surface meets components of the trisection in trivial disks or arcs. Such a decomposition, which we call a generalized bridge trisection, extends the authors’ definition of bridge trisections for surfaces in S 4 . Using this construction, we give diagrammatic representations called shadow diagrams for knotted surfaces in 4-manifolds. We also provide a low-complexity classification for these structures and describe several examples, including the important case of complex curves inside ℂ ℙ 2 . Using these examples, we prove that there exist exotic 4-manifolds with ( g , 0 ) —trisections for certain values of g. We conclude by sketching a conjectural uniqueness result that would provide a complete diagrammatic calculus for studying knotted surfaces through their shadow diagrams.more » « less
An official website of the United States government

Full Text Available